Mountain glaciers influence biogeochemical and ecological characteristics of alpine lakes in the Northern Rockies

Joe Vanderwall Flathead Lake Biological Station

Montana Lakes Conference Thursday, October 19th 2023

... leading to newly formed lakes

Himalaya

Grinnell Glacier

Glacial lake formation

Tweed and Carrivick 2015

Glacial meltwater is nutrient rich

Table 2

The number of molecular formulas identified, the % containing the heteroatoms N, P, and S, and their average molecular weight as revealed by FTICR-MS for DOM samples isolated from the waters of the Tibetan Plateau.

Sample site	Formulas assigned	CHO-only (%)	Contains N (%)	Contains S (%)	Contains P (%)	Mean mass
Mount Nyainqentanglha Glacier	4399	1848 (42%)	2035 (46%)	371 (8%)	195 (4%)	390
Karola Glacier	4351	1761 (40%)	2078 (48%)	279 (6%)	289 (7%)	404
Mount Nyainqentanglha Stream	4416	1739 (39%)	2158 (49%)	363 (8%)	229 (5%)	398
Karola Glacier Stream	4520	1758 (39%)	2189 (48%)	402 (9%)	261 (6%)	395
Namtso Lake	2301	953 (41%)	997 (43%)	355 (15%)	40 (2%)	402
Yamdrok Lake	2399	972 (41%)	1032 (43%)	409 (17%)	42 (2%)	413

Spencer et al. 2014

Hood and Scott 2008

Slemmons et al. 2013

How do lake nutrient concentrations change along a gradient of glacial influence?

Does the relative supply of nitrogen and phosphorus change as well?

How do phytoplankton nutrient ratios change across glacial influence?

Are physical or chemical drivers more important in structuring glacial lake zooplankton assemblages?

Glacier National Park - a perfect natural experiment

- Well documented glacial retreat: many lakes ~ 100 yrs old
- Both glacial and non-glacial lakes at similar elevations
- Some basins have their own turbidity gradient!

Ghost Lake

View of Sperry Basin - from glacier

Comparing

- Backpack surv
- 29 lakes rangi • Samplec
- Collected physical complanation devices the second se

pc Jim Elser

Lake chemistry across elevation

- Most mineral cations and anions decrease with elevation with no difference between lake types
- Chl seems to be high in a few high elevation glacial lakes

Nutrients and elevation

• Higher phosphorus (2x) and nitrate (3.5x) concentrations in glacial lakes

Glacial

Nutrient and seston ratios across Secchi depth

• Segment regression: independent breakpoint

Nutrient and seston ratios across Secchi depth

- Segment regression: independent breakpoint
- Nutrient ratios: TOC:TP increased across secchi depth

The second se

Zooplankton - key filter feeders

- Calanoid copepods
 - tend to be relatively large
 - Primarily filter
 feeders (Kleppel
 1993)

Vanderwall et al. 2023

Zooplankton

- Assemblages: virtually no *Daphnia* or calanoid copepods in glacial lakes
- **Biomass**: Lower in glacial lakes

How does glacial meltwater structure the ecology of newly formed mountain lakes?

• Higher concentrations of nitrogen and phosphorus in glacial lakes

Why are these lakes important? Why should we care about them?

- Scientifically
 - Opportunity to study how lakes develop directly after formation
 - Habitat refuge
- Non-scientifically

 Iconic landscape features
 - Stark reminder of changing climate

Acknowledgments

Friends and ColleaguesJulia CotterCharlie WZe RenMarie JohRomain BoisseauLogan PeZane LindstromJoe GiersHarris SloanCarly InniKory KolisKeaton MNellie LittleWhit MeroTaylor MirandaRyan BarIra MollNatalie PeSara KovalskyDavid KerHallie TurnerCarly PorClint MuhlfeldChad Hammer (pc for this background)

Many others!

EE grad students BRIDGES grad students

Glacier NP

Charlie Wainright Marie Johnson Logan Peoples Joe Giersch Carly Innis Keaton Martin Whit Mercer Ryan Barna Natalie Poremba David Kerner Carly Poremba

FLBS undergrads

Glacier USGS

Committee

Jim Elser Ash Ballantyne Bob Hall Janice Brahney Art Woods

Questions?

