Conceptual Overview of DEQ's Lake and Reservoir Eutrophication Assessment Method

Lake Conference October 19th, 2023 Abbie Ebert Water Quality Monitoring Scientist

Conceptual Overview of Lake and Reservoir Eutrophication Assessment Method

Outline

- What is an Assessment Method?
- Water Quality Standards and Beneficial Uses
- Monitoring Recommendations and Requirements
- EPA Stressor Response Models
- Assessment Decision Frameworks
- Next Steps

What is an Assessment Method?

- Required under the MT Water Quality Act and Clean Water Act
- A tool and document that provides a framework to determine whether waters are supporting their designated beneficial uses.
- Integrated Report and Impaired Waters List

Lakes and Reservoirs in Montana

- Number of named lakes in MT ten acres or greater: 1,905
- Acres of named lakes ten acres or greater: 1,083,718

Conceptual Overview of Lake and Reservoir Eutrophication Assessment Method

Applicability

- Lakes and Reservoirs ten acres and greater in size.
- Reservoirs with a residence time greater than 14 days.¹

¹ EPA Nutrient Criteria Technical Guidance Manual for Lakes and Reservoirs, 2000

Conceptual Overview of Lake and Reservoir Eutrophication Assessment Method

Water Quality Standards

- Narrative Standard: statements that describe the desired conditions of waterbody.
- "State surface waters must be free from substances attributable to municipal, industrial, and agricultural practices or other discharges that will: (e) create conditions which produce undesirable aquatic life." (ARM 17.30.637(1))

Beneficial Uses

- 5 Main Categories
 Aquatic Life
 Recreation
 - Drinking Water
 - Agriculture
 - Industry

Required Parameters for Assessment

Response Variable Parameters	Causal Parameters	Model Inputs
Chlorophyll a (Chla)	Total Nitrogen (TN)	Dissolved Organic Carbon (DOC)
Secchi Depth (SD)	Total Phosphorus (TP)	Temperature Profile*

* Temperature profile is only required for aquatic life beneficial use assessment.

Required Parameters for Assessment - Recreation

- Harmful Algal Bloom (HAB)
 - Cyanotoxins (Microcystin, Anatoxin-a, & Cylindrospermospin)
 - Cyanobacterial Cell Count
 - Documented, visible, and pervasive cyanobacteria blooms

Recommended Monitoring Timeframe for Aquatic Life

- Collected July September
- At least once per month
- At least 14 days apart

Recommended Monitoring Timeframe for Recreation

- Collected June September
- At least once per month
- At least 14 days apart

Monitoring Locations

- Assessment Unit
- Assessment Zones
 - Larger lakes and reservoirs segmented into distinct bays or zones.

Example of Assessment Zones

- 1. Inflow
- 2. Transitional
- 3. Near-Dam

Nutrient Monitoring Locations

- Deepest point or midpoint
- Within the epilimnion

Response Variable Monitoring Locations

Aquatic Life

- Chla and Secchi Depth
 - Deepest point or midpoint
 - Within the epilimnion

Response Variable Monitoring Locations

Recreation

- Chla and Secchi Depth
 - Deepest point or midpoint
 - Within the epilimnion
 - Shoreline

HAB Monitoring Locations

- Where cyanobacteria occur.
- Where contact recreation occurs.

Minimum Data Requirements Nutrients, Chla, & Secchi Depth

- Collected during two separate years.
- Minimum of 8 individual samples

HAB Data

- Collected during two separate years.
- Minimum of 3 individual samples

EPA Lake & Reservoir Stressor Response Models

- Tools to derive site specific thresholds that reflect local conditions.
- Two model options
- Output: Chlorophyll a Threshold

EPA Ambient Water Quality Criteria to Address Nutrient Pollution in Lakes and Reservoirs, 2021

Conceptual Overview of Lake and Reservoir Eutrophication Assessment Method

EPA Lake & Reservoir Stressor Response Models – Aquatic Life

Hypoxia Model

- Seasonal stratification
- Protecting cold and cool water fish.

https://nsteps.epa.gov/apps/chl-hypoxia/

EPA Lake & Reservoir Stressor Response Models – Aquatic Life

Zooplankton Model

- Meso- to hypereutrophic lakes
- Relationship between phytoplankton and zooplankton.

https://nsteps.epa.gov/apps/chl-zooplankton/

Aquatic Life Decision Framework

Recreation Decision Framework

Prepare data for assessment.

Step 1: Compare monthly averages to the Chl*a* and secchi depth ecoregional percentiles.

>67th percentile Chl*a* and/or

≤67th percentile Chl*a* and/or

<33rd percentile Secchi Depth

≥33rd percentile Secchi Depth

Parameter	Ecoregion	Threshold		Parameter	Ecoregion	Threshold
Chl <i>a</i> (67 th percentile)	Northern Rockies and Idaho Batholith	1.1 μg/L		Secchi Depth (33 rd percentile)	Northern Rockies and Idaho Batholith	4.8 m
	Northwestern Great Plains	10.7 μg/L			Northwestern Great Plains	2.4 m

Recreation Decision Framework

Prepare data for assessment.

Step 1: Compare monthly averages to the Chl*a* and secchi depth ecoregional percentiles.

>67th percentile Chla and/or $\leq 67^{th}$ percentile Chla and/or

 $<33^{rd}$ percentile Secchi Depth $\geq 33^{rd}$

≥33rd percentile Secchi Depth

Step 2: Compare monthly averages to the ecoregional thresholds based on literature values.

Fully supporting recreation.

Recreation Decision Framework

HAB Thresholds

Parameter	Threshold		
Microcystin ¹	8 ug/L		
Anatoxin-a ²	20 ug/L		
Cylindrospermopsin ¹	15 ug/L		
Cyanobacterial Cell Count ²	> 100,000 cells/mL		
Documented, visible, pervasive	> 14 days loss in the recreational		
cyanobacteria bloom	season per year		

¹ EPA Recommendations for Cyanobacteria and Cyanotoxin Monitoring in Recreational Waters, 2019

² Harmful Algal Bloom Guidance Document for Montana, 2021

HAB Decision Framework

Prepare data for assessment.

Compare individual cyanobacteria concentrations, cyanobacterial cell counts and document HABs samples to HAB thresholds.

- > 1 Cyanotoxin exceedance and/or
- > 1 Cell count exceedance and/or
- > 1 Document HABs exceedance

- ≤ 1 Cyanotoxin exceedance
- \leq 1 Cell count exceedance
- ≤ 1 Document HABs exceedance

Next Steps

- Public Comment Period
- Final Assessment Method
- Assess selected lakes for the 2022-2024 Integrated Report

Connect with us!

Abbie Ebert Water Quality Monitoring Scientist Abbie.Ebert@mt.gov 406.444.5390

Upper Red Rock Lake

Conceptual Overview of Lake and Reservoir Eutrophication Assessment Method

Thank you!

Holland Lake

Conceptual Overview of Lake and Reservoir Eutrophication Assessment Method