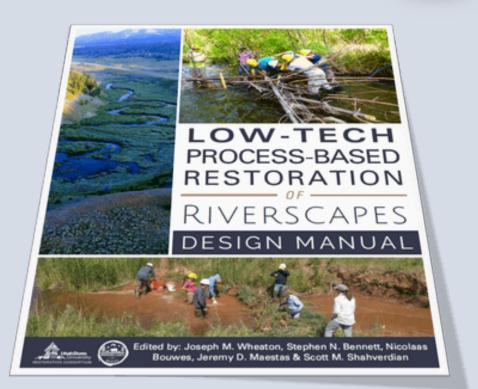
BUILDING ECOSYSTEM RESILIENCY WITH LOW-TECH PROCESS-BASED RESTORATION TESS HANSON THE BARN GROUP

DAN LEE CREEK, IDAHO

MONTANA LAKES CONFERENCE OCTOBER 19-20, 2023

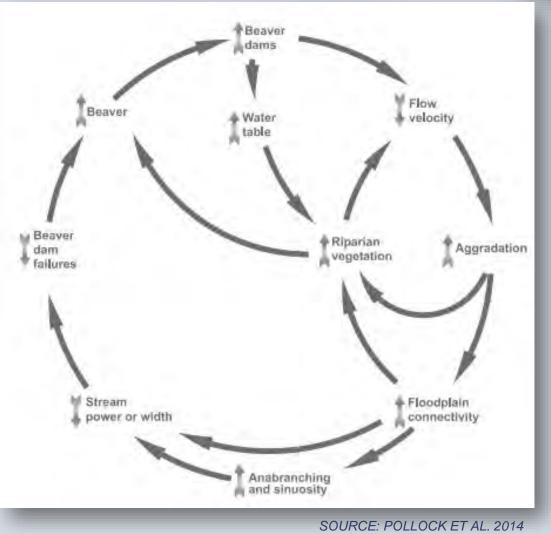
- WHAT IS LTPBR?
- WHY EMULATE BEAVERS?
- MONTANA CASE STUDY
- DESIGN PROCESS
- WIDESPREAD APPLICATIONS
- WATERSHED BENEFITS



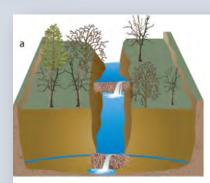
WHAT IS LTPBR?

Low-Tech Process-Based Restoration

- **Low-tech** = cost-effective, minimal engineering, hand-built, and sometimes short design life-span.
- **Process-based** = Utilize hydrologic, geomorphic, and biological processes to repair ecosystems and encourage potential to **self-sustain**.
- LTPBR excellent for systems that lack **structural complexity**, historically, this was achieved in many systems through beaver dam complexes.

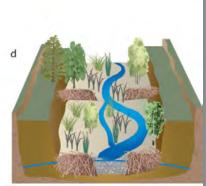

"Structural-starvation of wood and beaver dams in riverscapes is one of the most common impairments affecting riverscape health." (Wheaton et al 2019).

BEAVER FEEDBACK LOOP


WHY EMULATE BEAVERS? BEAVERS ARE ECOSYSTEM ENGINEERS – CREATE AND MAINTAIN MICROHABITATS

PROCESS IN ACTION

EST. 2015 NHR. MONITOR. M.


- a) Dams constructed in incised channel→ backwater
- b) Altered hydraulics
 impacts geomorphic
 processes →
 aggradation
- c) Vegetation establishes, water disperses over floodplain

SOURCE: POLLOCK ET AL. 2014

d) More vegetation is established, new flow paths form →
anabranching

e) Water table is raisedand river is reconnectedto historic floodplain

f) Never-ending feedback
loop → dynamic
equilibrium is restored!

PROCESS IN ACTION

BEAVER DOMINATED RIVERSCAPE

HEAVILY GRAZED RIVERSCAPE

Our cultural ideal of the stream as a thin blue line is so different from the streams where beavers live: wide and sinuous, with irregular emergent zones.⁹¹

SOURCE: PASSMORE, 2019.

FIRE RESILIENCE

So about the whole "turns out, water doesn't burn" thing... Another example of beaver dam activity creating riverscape resilence to fire!

THE BDA EFFECT

Water table 7

Adding dams

Beaver trapping and overgrazing have caused countless creeks to cut deep trenches and water tables to drop, drying floodplains. Installing BDAs can help.

Widening the trench

BDAs divert flows, causing streams to cut into banks, widening the incised channel, and creating a supply of sediment that helps raise the stream bed.

Beavers return

As BDAs trap sediment, the stream bed rebuilds and forces water onto the floodplain, recharging groundwater. Slower flows allow beavers to recolonize.

A complex haven

Re-established beavers raise water tables, irrigate new stands of willow and alder, and create a maze of pools and side channels for fish and wildlife.

LTPBR STRUCTURES

PALS (POST-ASSISTED LOG STRUCTURES)

→ Mimic natural wood accumulation
 → Alternative to large wood structures

• BDAS (BEAVER DAM ANALOGUES)

- → Mimic beaver activity
- → Alternative to traditional grade control structures

KRAUSE CREEK, SOURCE: RICHARDSON 2022

APPLICATION: TETON SPRING CREEK

FRESHWATER PARTNERS

- PROJECT LOCATION: 737-acre ranch outside of Choteau, Montana
- **PARTNER:** Montana Freshwater Partners
- **IMPAIRMENTS:** Vegetative cover, flow, temperature, and water quality
- FUNDING SOURCE(S): Section 319
- SOURCE OF DEGRADATION: Cattle and other anthropogenic influences → incision, widening, and loss of vegetation

RESTORATION APPROACH

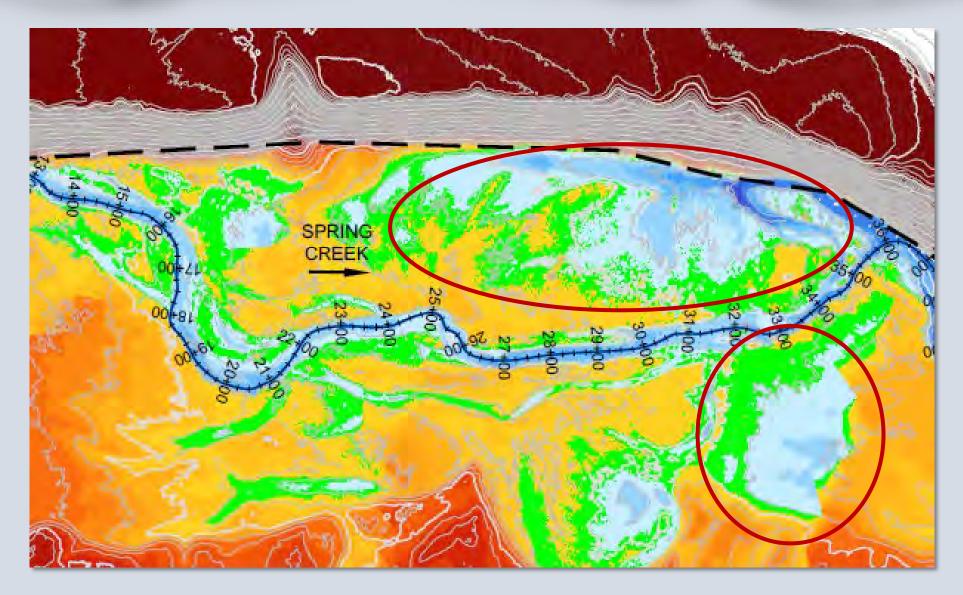
OBJECTIVES:

- Improve floodplain connection
- Enhance riparian function
- Promote geomorphic "stability" (reduce incision)
- Increase habitat diversity
- Improve water quality

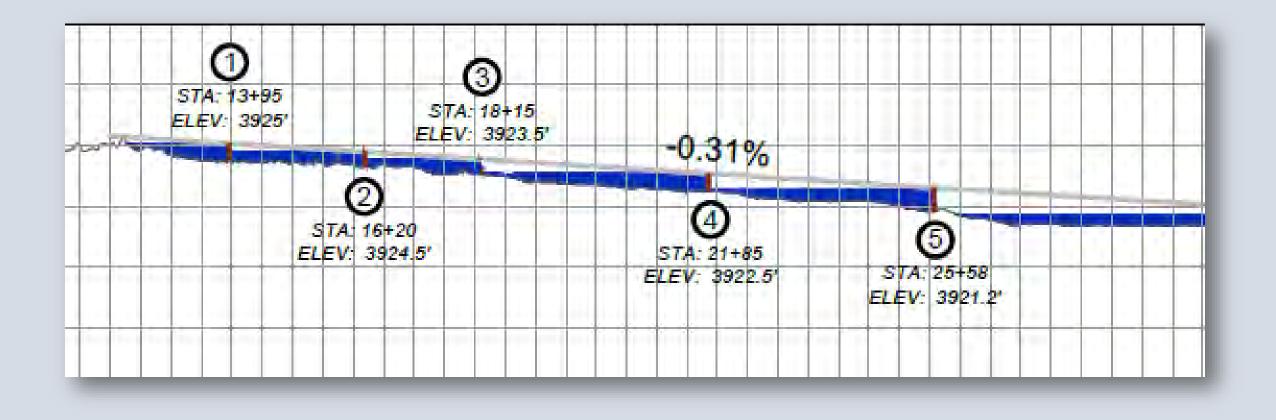
RESTORATION ACTIONS:

- Construct beaver dam analog structures (BDAs)
- Remove small berm located within floodplain
- Install Cottonwood browse protectors

DESIGN PROCESS


1) Assess floodplain connectivity

- 2) BDA structure placement based on slope and topography
- 3) Establish height of structure
- 4) Examine resulting hydrology (i.e. area of influence and inundation) and iterate



RELATIVE ELEVATION MAP

STRUCTURE PLACEMENT

ESTIMATING HYDROLOGY

STRUCTURE DETAIL

WIDESPREAD APPLICATIONS

- Pacific Northwest (Methow River)
- Northern Rockies Ditched and Heavily Grazed Streams (*Teton Spring Creek*)
- Sagebrush Steppe / Arid Riverscapes (Wyoming/Utah)

SOURCE: PASSMORE 2019

WATERSHED BENEFITS

Through reestablishment of natural processes, ecological function is restored → bolstering ecosystem resiliency through:

- Increased water storage
 - Improvements in water quality (i.e., reduction in erosion, drop in temperatures, sediment and nutrient retention)
- Floodplain reconnection
- Increased biodiversity / habitat complexity
- Fire Resiliency

QUESTIONS?